Психология и соционика

Клуб Квадра. Краткие сведения о соционике и ее связи с психологией. Описания соционических типов. Тесты. Статьи

Регрессия линейная парная PDF Печать E-mail
Автор: admin   
08.07.2010 07:13

РЕГРЕССИЯ ЛИНЕЙНАЯ ПАРНАЯ - причинная модель статистической связи линейной (см.) между двумя количественными переменными (см.) х и у, представленная уравнением y = a + bx, где х - переменная независимая (см.) (предиктор), y - переменная зависимая (см.) (см. также Анализ регрессионный). Коэффициент регрессии b и свободный член уравнения регрессии a вычисляются по формулам:

b = r sy/sx = ∑ (xi - x)(yi - y) / ∑ (xi - x)²; a = y - bx,

где r - коэффициент линейной корреляции Пирсона для переменных x и y; sx и sy - стандартные отклонения (см.) для переменных x и y; x,y - средние арифметические (см.) для переменных x и y.

Существуют два подхода к интерпретации коэффициента регрессии b. Согласно первому из них, b представляет собой величину, на которую изменяется предсказанное по модели значение ŷi = a + bxi при увеличении значения независимой переменной x на одну единицу измерения, согласно второй - величину, на которую в среднем изменяется значение переменной yi при увеличении независимой переменной x на единицу. На диаграмме рассеяния (см.) коэффициент b представляет тангенс угла наклона линии регрессии y = a + bx к оси абсцисс. Знак коэффициента регрессии совпадает со знаком коэффициента линейной корреляции: значение b > 0 свидетельствует о прямой линейной связи, значение b < 0 - об обратной. Если b = 0, линейная связь между переменными отсутствует (линия регрессии параллельна оси абсцисс).

Свободный член уравнения регрессии a интерпретируется, если для независимой переменной значение x = 0 имеет смысл. В этом случае y = a, если x = 0.

Качество (объясняющая способность) уравнения парной линейной регрессии оценивается с помощью коэффициента детерминации (см.).

О.В. Терещенко