Психология и соционика

Клуб Квадра. Краткие сведения о соционике и ее связи с психологией. Описания соционических типов. Тесты. Статьи

Методы множественных сравнений PDF Печать E-mail
Автор: admin   
08.07.2010 07:13

МЕТОДЫ МНОЖЕСТВЕННЫХ СРАВНЕНИЙ - статистические методы, являющиеся составной частью анализа дисперсионного (см.) и предназначенные для проверки гипотез о различиях между средними арифметическими значениями зависимой переменной в группах в эксперименте факторном [см. также Метод парных сравнений (I)].

М.М.С. базируются на понятии контраста средних. Контрастом называется линейная комбинация средних ∑λiμi, коэффициенты которой удовлетворяют условию ∑λi = 0. Каждый контраст позволяет сравнить среднее взвешенное двух наборов групп. Например, μ1 - μ2, 1/2 (μ1 + μ2) - 1/3 (μ3 + μ4 + μ5) и т.п. Нулевая гипотеза (H0 : ∑λiμi = 0) предполагает, что два набора групп по своим средним значениям существенно не различаются; альтернативная гипотеза (H1 : ∑λiμi ≠ 0) - что различия между двумя наборами групп статистически значимы. Существует несколько методов проверки этой гипотезы, наиболее распространенными из которых являются Т-метод Тьюки и S-метод Шеффе.

Для проверки гипотезы по методу Шеффе необходимо построить доверительный интервал ∑λiyi ± S, где S = (k - 1) MSSвнгр F1-α ∑(λi² / ni); λi - контрастные коэффициенты групп, ni - объем групп, входящих в контраст, MSSвнгр - внутригрупповой средний квадрат (см. Анализ дисперсионный), F1-α - 100(1-α)-й квантиль распределения F с числами степеней свободы (p - l;n - p). Если этот интервал не содержит 0, то H0 отвергается при уровне значимости α. Эта процедура повторяется для каждого контраста, представляющего интерес для исследования.

Метод Тьюки применяется только в случае равных объемов групп. Для проверки гипотезы H0 : ∑λiμi = 0 против альтернативы H1 : ∑λiμi ≠ 0 нужно построить доверительный интервал ∑λiyi ± T, где T = 1/2 √(MSSвн/m) q1-α ∑|λi|}, а q1-α есть 100(1-α)-й квантиль распределения стьюдентизированного размаха с числами степеней свободы p и n-p. Если этот интервал не содержит 0, то H0 отвергается при уровне значимости α.

О.В. Терещенко