Психология и соционика

Клуб Квадра. Краткие сведения о соционике и ее связи с психологией. Описания соционических типов. Тесты. Статьи

Аксиоматический метод PDF Печать E-mail
Автор: admin   
08.07.2010 07:13

АКСИОМАТИЧЕСКИЙ МЕТОД (греч. axioma - значимое, принятое положение) - способ построения теории (см.), при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость А.М. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные ("принципы") и требующие доказательства ("доказываемые"). В своем развитии А.М. прошел три этапа.

На первом этапе А.М. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат "Начала" Евклида. На втором этапе Д. Гильберт внес формальный критерий применения А.М. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе А.М. становится формализованным. Соответственно, изменилось и понятие "аксиома". Если на первом этапе развития А.М. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в А.М. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А.М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как "полуаксиоматический") и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от А.М., предполагает построение иерархии гипотез (см.), в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений А.М.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики "во всех мирах"; снять требование равноправности аксиом. С другой стороны, А.М., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

В.Л. Абушенко